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A two-scale domain decomposition method for computing the
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SUMMARY

A two-scale domain decomposition method is developed in order to study situations where the macro-
scopic description of a given transport process in porous media does not represent a su�ciently good
approximation near singularities (holes, wells, etc.). The method is based on a decomposition domain
technique with overlapping. The governing equations at the scale of the microstructure are solved in the
vicinity of the singularities whereas the volume averaged transport equations are solved at some dis-
tance of the singularities. The transfer of information from one domain to the other is performed using
results of the method of volume averaging. The method is illustrated through the computation of the
overall permeability of a porous layer limited by a perforated plate. As shown in the example treated,
the method allows one to estimate the useful size of the microscopic region near the singularities. As
illustrated in the paper, the method can lead to a considerable gain in memory requirement compared
to a full direct simulation. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are interested in the computation of the incompressible steady �ow of a
Newtonian �uid through a porous layer limited by a perforated plate. This type of situation
can be encountered in �ltration as a result of the particle deposition at the �lter or membrane
surface [1–3] as well as in other applications, for example in numerous chemical engineering
processes using a �xed bed of reactive or catalytic particles. Figure 1 shows a schematic
illustration of the situation under study. We assume that the direction of the average �ow is
perpendicular to the plate and would like to determine in particular the overall permeability
of the system formed by the porous layer and the perforated plate. As shown in the �gure,
four characteristic lengths may be distinguished, the thickness of the layer Lz, the size of
the particle ‘, the average distance between two perforations Lx and the size of the wall
perforation d. Assuming Stokes �ow everywhere in the �uid domain, an approximation of
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Figure 1. Schematic illustration of the situation studied.

the �ow can be obtained using Darcy’s law in the porous domain and appropriate boundary
conditions. However, it is well known that Darcy’s law is a �rst-order approximation of the
�ow which is all the better as the scale of the particle is small compared to the macroscopic
scale of the porous domain (i.e. there must exist some length scale separation). In the present
context, this means that we may expect reasonable predictions using Darcy’s law provided L
is large enough compared to ‘, i.e. ‘=Lz � 1. However, it is clear from Figure 1 that this
condition is certainly not su�cient to obtain a good approximation of the �ow in the vicinity
of the wall with Darcy’s law if the size of the holes is not large compared to the particle
size, i.e. when d≈ ‘. As will be illustrated in the paper, under this condition (i.e. d≈ ‘), the
porous domain can be divided into two regions: an outer region where Darcy’s law represents
a su�cient approximation of the �ow and an inner region, in the vicinity of the perforated
wall, where the solution of the �ow must be determined directly from the Stokes equations.
This suggests developing a decomposition domain technique in which the �ow is computed
at the microscopic scale using the Stokes equations in the wall domain and at Darcy’s scale
in the outer domain. As the scale of description is di�erent for the two domains, one must
develop speci�c procedures to transfer information from one domain to the other. In the
present work, these procedures have been developed using results of the volume averaging
technique [4]. Although we consider a speci�c situation, the problem studied may be viewed
as generic in the context of the continuum approach to porous medium [4, 5]. As stated above,
the continuum approach results from a change in the scale of description and is associated
with some length separation between the typical length scale of the macroscopic domain and
the scale of the microstructure. When there exist singularities within the domain or at the
boundary of the domain and when the typical length scale of the singularities (the holes in
our case) is of the order of the microstructure length scales, the continuum approach may
not represent a su�cient approximation and the problem must be solved directly at the scale
of the microstructure in the vicinity of a singularity. For example, at a completely di�erent
scale, this is the case when transport in a fractured medium is described using a continuum
model and the average distance between the fractures is of the order of a well diameter.
The transport around the well must be described at the fracture scale whereas one can rely
on the continuum description at some distance of the well [6]. Thus, although applied to a
particular problem, the domain decomposition method presented here can be easily adapted
to treat many other situations.
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2. PROBLEM DEFINITION

The situation considered is shown in Figure 2. A two-dimensional spatially periodic array of
cylinders is limited by a perforated plate. The distribution of perforations is spatially periodic
and so one can restrict the study to a unit cell of the system. The cylinders are supposed
distributed symmetrically about the axis of a perforation so that the domain of interest can be
�nally reduced by half. As shown in Figure 2, d is the size of perforation, ‘ the size of a unit
cell of the cylinder array, Lx the distance between two perforations and Lz the thickness of the
porous layer. The cylinder radius is noted R and the solid concentration C with C=�R2=‘2.
The full study of the overall permeability of such a system as functions of these various length
scales is beyond the scope of the present paper and will be the subject of a forthcoming
paper, see however Dufrêche [7]. In the present paper we focus on the two scale domain
decomposition method and only consider the case where Lz=Lx and Lx=‘=20. As mentioned
in the introduction and made clear in the following, this method relies on the computation of
the Stokes �ow in the vicinity of the plate and Darcy-problem in the outer region. Typically,
this implies to solve the Stokes equations over domains containing several tens of cylinders.
To this end we used a spectral boundary element method (BEM) specially designed for

Figure 2. Two-dimensional spatially periodic array of cylinders limited by a perforated plate.
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Figure 3. Isobars obtained from the Stokes problem (dashed lines) and
from the Darcy problem (solid lines).

computing e�ciently the Stokes �ow through an array of cylinders. In particular, this BEM
version leads to a considerable saving in memory size compared to a standard constant element
method for results of similar accuracy. However, the particular method chosen for solving the
Stokes equations is not a key issue for the two scale domain decomposition method. Any
su�ciently e�cient and accurate method can be used. In particular, one could also use other
numerical techniques (e.g. �nite element, �nite di�erence, �nite volume). For this reason, the
particular BEM method we used is not presented here. Details on this method as well as
a validation based on a comparison with the classic results of Sangani and Acrivos [8] can
be found in Dufrêche [7]. Figure 3 shows an example of pressure �eld obtained solving the
Stokes equation over the domain depicted in Figure 2 for the following boundary conditions:

∇· u=0 (1)

��u=∇p (2)

ux(x)=0; uz(x)=1 at z= − ‘ (3)

symmetry condition at x=0 and x=LX =2 (4)

ux= uz=0 at (d=2¡x¡LX =2; z=LZ) and (x=d=2; Lz¡z¡Lz + d) (5)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:623–639
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ux= uz=0 at the cylinder boundary (6)

ux=0; uz=6US
(d2 − x)(d2 + x)

d2
at z=LZ + d (7)

where u is the velocity, p the (microscopic) pressure, � the dynamic viscosity and US = Lx
d

the average velocity at the outlet.
As can be seen from Equation (3), a uniform velocity is imposed at the entrance of the

domain. As indicated by Equation (3) and illustrated in Figure 2, the domain considered is
slightly greater than the one depicted in Figure 3 in order to have a layer of free �uid of
width ‘ between the �rst row of unit cells and the entrance of the computation domain. It
may indeed be argued that it is not consistent to impose a uniform microscopic �ow directly
at the entrance of the �rst row of unit cell owing to the presence of the obstacles. Tests for
various sizes of the entrance free �uid layer reveal that the perturbations due to the obstacles
vanish at a distance of the order of a unit cell length, i.e. the incident frontal Stokes �ow is
still practically uniform at a distance ‘ away from the �rst row of cylinders.
As shown in Figure 2, an exit channel of length d is imposed at the exit of the system.

As discussed in Dagan et al. [9], a channel of this length is su�cient to obtain a Poiseuille
pro�le at the exit of the channel, consistently with Equation (7).
Figure 3 also shows the pressure �eld obtained using the Darcy’s law, i.e. solving the

following boundary value problem:

U= − Ki
�

∇P (8)

∇·U=0 (9)

P=P0 at z=0 (10)

P=P1 at z=LZ (0¡x¡d=2) (11)

@P
@z
=0 at z=LZ (d=2¡x¡LX =2) (12)

@P
@x
=0 at x=0 and x=LX =2 (13)

where U is the �ltration (Darcy) velocity, P the pressure at Darcy-scale and Ki the intrinsic
permeability of the cylinders array.
This problem is solved using a semi-analytic method of separation of variables [7, 10, 11].
Note that the pressure at z=0 and the overall �ow rate are the same in both computations

(to this end the pressure �eld given by Equations (8)–(13) was rescaled appropriately). Also
note that the location of the domain boundaries are chosen carefully in order to avoid any
parasitic e�ects associated with the macroscopic boundary conditions. As shown in Prat [12],
imposing macroscopic Dirichlet conditions (such as Equations (10) and (11)) may introduce
errors of the order of (‘=Lz)(P0 − P1) on the pressure �eld computation. Here, the location
of the boundaries has been chosen for this type of error to be negligible. Furthermore, note
that the domain contains an integer number of unit cells. This contributes to minimize still
further any error associated with the macroscopic boundary conditions. In brief, we conclude
that a possible in�uence of the macroscopic boundary condition cannot be invoked here for
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explaining the discrepancies that are observed between the overall permeability deduced from
the direct computation (Stokes equations) and the one given by the Darcy model (see below).
We refer the interested reader to References [12] and [13] for more details about the in�uence
of the macroscopic boundary conditions.
Figure 3 clearly shows two main regions: a region in the vicinity of the hole where the

average �ow is two-dimensional and an outer region where the average �ow direction is
essentially perpendicular to the plate. As can be seen from Figure 3, the discrepancies between
the pressure �eld given by the Darcy model and the one corresponding to the Stokes equations
is marked in the wall region. Naturally, it may be objected that we compare here a microscopic
�eld with a macroscopic one, i.e. �elds at two di�erent scales. However, this does not prevent
us to conclude from Figure 3 that the mean pressure gradients are identical in the outer region.
As the overall �ow rate is the same for both computations, this indicates that the Darcy model
is su�cient to predict the pressure drop in the outer region. In order to compare the overall
pressure drops over the system, the overall permeability is de�ned as

K =
�Q

(P0 − P1)
Lz
Lx

(14)

where Q is the �ow rate, P0 the pressure at the entrance of the system and P1 the average
pressure at the exit, i.e. at z=Lz.
For this particular case, the overall permeability predicted with the Darcy model is K=Ki=

0:763 whereas the value deduced from the direct Stokes simulation is K=Ki=0:686 (Ki is the
intrinsic permeability of the cylinder array). Thus, the Darcy model overestimates the overall
permeability compared to the direct computation based on the Stokes computation. From these
results and as the mean pressure gradients are identical in the outer region, it can be concluded
that the Darcy model fails in the wall region only. This is consistent with the fact that the
length scale separation is not su�cient in the wall region. In other terms, the �ow loses its
local periodicity in the region near the hole and as a result the microscopic �ow structure
over a unit cell becomes su�ciently di�erent from the spatially periodic �ow structure for
inducing a resistance to the �ow greater than that associated with the Darcy model.

3. TWO-SCALE DOMAIN DECOMPOSITION

The above results suggest using domain decomposition ideas for computing the overall perme-
ability. As sketched in Figure 4, the computational domain is divided into two sub-domains.
The �rst one includes the plate. This domain is limited by the dotted line in light grey in
Figure 4. The Stokes equations must be solved in this region where the problem is therefore
solved at the scale of the microstructure. The second domain corresponds to the outer region
where the Darcy model represents a su�cient approximation. This domain is limited by the
dashed line in black in Figure 4. Note that the two domains, termed Stokes domain (�S) and
Darcy domain (�D) in the following, overlap over a region of extension ‘. Note also that
the distance from the wall at which the overlapping region should be located is not known a
priori. This distance depends on the accuracy which is required and must be considered as an
unknown of the problem. To deal with this aspect, the procedure is to increase progressively
the size of the Stokes domain until convergence of the overall permeability. Suppose now
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Figure 4. Schematic illustration of the two-scale domain decomposition.

that this distance is given. The computation of the overall permeability is performed using an
iterative procedure that can be summarized as

(1) Compute an initial guess of the pressure �eld using the Darcy model in both domains.
(2) Use closure relations (Equation (15)) for determining microscopic velocities on �S.
(3) Compute Stokes �ow in Stokes domain using the boundary conditions on �S determined

in step 2.
(4) Spatially average the pressure determined in step 3 for determining macroscopic pres-

sures on �D.
(5) Compute new pressure �eld in Darcy domain using the spatially averaged pressure

determined in step 4 as boundary condition on �D.
(6) Repeat the procedure, i.e. return in (2) until convergence.

These various steps are now described in more details.
Step 1: Initial guess. An initial guess of the pressure �eld over �D is obtained solving

the Darcy problem, Equations (8)–(13), over the whole domain, i.e. �D ∪�S. As indicated
previously, this problem is solved using a method of separation of variables [7]. Again, the
particular method chosen is not a key feature of the two-scale decomposition method. A
classic numerical scheme could be used as well. For this reason, the details regarding the
peculiar method we used are omitted.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:623–639
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Step 2: Closure relations. In this step, we make use of the so-called closure relations
derived within the framework of the method of volume averaging [4]. According to Barrere
et al. [14], these closure relations can be expressed as

u=
1
�
D ·∇P (15)

p̃S = d ·∇P (16)

D is the second-order tensor �eld that maps the macroscopic pressure gradient �eld onto the
microscopic velocity �eld u. d is the vector �eld that maps the macroscopic pressure gradient
�eld onto the microscopic spatial deviation pressure p̃S (with p̃S =p− P). D and d must be
determined numerically as explained in Appendix A for each unit cell considered, i.e. here
each concentration C considered.
The closure relations lead to an accurate determination of the microscopic �elds when the

�ow is spatially periodic at the scale of the unit cell, i.e. here when the overlapping region
is located far enough from the plate for the microscopic �elds to be spatially periodic. Thus,
in fact, the two-scale decomposition method essentially consists in determining the distance
from the singularity (i.e. here the plate) for which the microscopic �ow at the scale of a
representative unit cell becomes spatially periodic.
Equation (15) is used to derive the microscopic velocity �eld to be imposed on �S in the

next step.
Step 3: Stokes problem over �S. The Stokes problem to be solved over �S reads

∇· u=0 (17)

��u=∇p (18)

symmetry condition at x=0 and x=LX =2 (19)

ux= uz=0 at (d=2¡x¡LX =2; z=LZ) and (x=d=2; Lz¡z¡Lz + d) (20)

ux= uz=0 at the cylinder boundary (21)

ux(x)=
1
�
(D ·∇PD):i; uz(x)=

1
�
(D∇PD):j; at z=LZD − ‘ (22)

ux=0; uz=6US
(d2 − x)(d2 + x)

d2
at z=LZ + d with Us =

2
d

∫ LX =2

0
uz(x; LZD − ‘) dx (23)

where i is the unit vector for the x-axis and j the unit vector for the z-axis. This problem is
solved using the BEM technique evoked in Section 2.
Step 4: Spatial averaging. In this step a macroscopic pressure distribution on �D is de-

termined by spatially averaging the microscopic pressure �eld p determined in the preceding
step. For a spatially periodic porous media, a macroscopic intrinsic variable, such as the
pressure, can be de�ned in terms of cellular average [15],

PD = [p]=
1
V

∫
V

[
1
Vf

∫
Vf

p dV
]
dV (24)

where V is the unit cell volume and Vf the volume of �uid contained within the unit cell. The
cellular average is performed numerically. To this end, the values of the ‘Stokes’ pressure are
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computed on the nodes of a discrete grid of regular spacing over each unit cell of interest.
As discussed in Section 4.1, tests indicated that a grid of 14×14 points per unit cell was
satisfactory for computing the above integral numerically [7]. Additional details on the cellular
average are given in Appendix B.
Step 5: Darcy problem over �D. The Darcy problem to be solved over �D reads,

@2P
@x2

+
@2P
@z2

= 0 (25)

@P
@x
=0 at x=0 and x=LX =2 (26)

P=Po at z=0 (27)

P=PD(x) at z=LZD (28)

This problem is di�erent from the one considered in step 1. The di�erence lies in the boundary
condition imposed on the domain top edge (Equation (28), to be compared with Equations
(11) and (12) for step 1 problem). As a result, we developed a semi-analytical method of
separation of variables appropriate for this problem [7]. Again, details are omitted since other
methods could be used as well.
Convergence criteria: The convergence of the procedure is estimated by computing the

evolution of the boundary conditions on �D and �S. More precisely, we determine the evolution
of the quantities CV and CP de�ned as,

CV =
∑N�

i=1 (u
ik
x − uik+1x )2 + (uikz − uik+1z )2∑N�
i=1 (u

ik+1
x )2 + (uik+1z )2

(29)

where ux, uz are the components of the microscopic velocity vector (Stokes) at �S. k + 1
refers to the current iteration and k refers to the previous iteration. N� is the number of nodes
on �S where the computation of the boundary conditions is performed.

CP=
∑N�

i=1 (P
ik
D − Pik+1D )2∑N�

i=1 (P
ik+1
D )2

(30)

where, as indicated before, PD = [p] at �D. For simplicity, as indicated by Equation (30), the
number of nodes considered on �D is the same as on �S, i.e. N�.
To ensure the convergence, a relaxation method is introduced. The boundary conditions on

�D and �S computed as described in steps 2 and 4 are corrected according to expressions of
the form,

�k+1 =!�̂k+1 + (1−!)�k (31)

with �k is the solution (i.e. u or PD) computed for iteration k, �̂k+1 the solution computed
for iteration k + 1, �k+1 the �nal boundary condition value on �D or �S for iteration k + 1
and ! the relaxation parameter.
As explained before, the various steps described above are performed for a given location

of the overlapping region. Once convergence is achieved for a given location, the extension
of the Stokes domain is increased. We start with a Stokes domain containing two rows of
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Figure 5. Chart of two-scale domain decomposition technique.

cylinders and proceed by discrete increments of size ‘ in the z-direction. Then we determine
the variation of the overall permeability as a function of the position of the overlapping region.
The overall permeability is �nally determined when the di�erence between its relative value for
two successive positions of the overlapping region becomes lower than a speci�ed value, i.e.∣∣∣∣Kz − Kz−‘Kz

∣∣∣∣6�
where Kz denotes the value of the overall permeability for �S located at z. The complete
procedure is summarized in Figure 5.

4. RESULTS

4.1. Validation (domain without contraction)

In this section, we consider a domain without contraction, i.e. d=Lx. In this case, the overall
permeability is equal to the intrinsic permeability and the Darcy solution leads to an excellent
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Figure 6. Computation domains for validation.

Table I. Sensitivity of the pressure cellular average to the grid size used over a unit cell (Np is the
number of grid nodes in one direction).

Relative error
Np [p] (%)

5 0.0535 7
8 0.0517 3
10 0.05054 1.08
12 0.05052 1.04
14 0.05048 0.96

estimate of the average pressure �eld (if care is exercised in order to avoid any parasitic e�ect
of the macroscopic boundary conditions, as discussed in Section 2, i.e. the domain contains
an integer number of unit cells). The domain considered is shown in Figure 6 with P=0 at
z=Lz, P=1 at z=0 and Lz=‘=20 so that P=0:05 at �D.
We �rst study the in�uence of the number of points per unit cell necessary for performing

the cellular average with a su�cient accuracy (step 4). As mentioned in Section 3, we use a
grid of uniform spacing. Np is the number of nodes per unit cell in one direction. The values
of the cellular average of the ‘Stokes’ pressure at �D are reported in Table I as a function
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Figure 7. Evolution of CP and CV as a function of the number of iteration I for various values of the
relaxation parameter ! (domain with no contraction).

of Np and compared to the expected value (0.05). As can be seen from Table I, a value of
Np=14 is su�cient to determine the pressure with a relative error lower than 1%. The results
reported in Table I were obtained for a solid concentration of 0.3 (C=0:3), i.e. the highest
concentration considered in the present paper.
The in�uence of the relaxation parameter !, Equation (31), is now examined. Figure 7

shows the evolution of the quantities CV and CP, Equations (29) and (30), as a function of
the number of iterations I for three di�erent values of !. The results reported in Figure 7
were obtained for a solid concentration of 0.05. Similar results were obtained for higher
concentrations. As can be seen from Figure 7, the smallest tested value !=0:1 leads to the
fastest convergence. This is consistent with the fact that the initial guess (Darcy solution over
whole domain) is here the correct solution at the macroscopic level. Hence, this result is
not general. In fact, Figure 7 merely illustrates that (1) convergence can be achieved, (2)
for each situation there exist an optimum value of !. The overall permeability deduced from
the two-scale domain decomposition approach is satisfactorily found to be K=Ki≈ 0:99 (to be
compared with the expected value (1) where Ki is the intrinsic permeability of the porous
medium (Ki is determined from the solution of Stokes equation over a unit cell).

4.2. Results (domain with contraction)

We now consider a domain with contraction as depicted in Figure 4. To gain insight into
the in�uence of the relaxation parameter !, we consider the case with C=0:05, d=Lx=0:1
and Nz=3 (where Nz is the size of the Stokes domain in the z-direction in number of unit
cells). Figure 8 shows the evolution of CV and CP as a function of the number of iterations
I for �ve di�erent values of !. As can be seen from Figure 8, the optimum value among the
tested values is !=0:25. This value was used for performing the simulations discussed in
the following. Again, this value is close to an optimum value for the peculiar problem under
study. Based on our numerical tests, the value !=0:5 can be recommended as a robust �rst
choice in all cases.
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Figure 8. Evolution of CP and CV as a function of the number of iteration I for various values of the
relaxation parameter ! (domain with contraction).

The overall permeability was computed using the two-scale domain decomposition method
for various concentrations C and contraction ratio d=Lx. The most instructive cases are those
corresponding to signi�cant discrepancies between the overall permeability predicted by the
Darcy model and that of the direct Stokes computation, i.e. for relatively small contraction
ratios and solid concentrations. Here, we present some representative results, i.e. for d=Lx=0:1
and C=0:05 and 0.3. We recall that the size of the porous layer is Lz=20‘. Figure 9 shows
the evolution of the overall permeability for 4 various sizes of the Stokes domain, namely
Nz=2, 3, 6 and 10. The case Nz=0 corresponds to the Darcy solution whereas the case
Nz=20 corresponds to the full direct Stokes computation. As expected, the solution of the
two-scale domain decomposition method converges toward the Stokes solution as the size of
the Stokes domain is increased. The maximum size considered (Nz=10) is still a bit too
small to fully recover the Stokes solution. However, Figure 9 clearly illustrates the validity of
the two-scale domain decomposition method, i.e. the microscopic description (Stokes domain
here) is needed only in the vicinity of the plate and a macroscopic description (Darcy domain)
is su�cient in the outer region. It is also interesting to note the rapid variations of the overall
permeability with the small values of Nz.

4.3. Cost of computation and memory requirement

Figure 10 shows the evolution of the time of computation corresponding to an iteration of the
two-scale domain decomposition method (i.e. a given value of Nz) as a function of the size of
the Stokes domain Nz. This time is compared to the time needed for solving the Stokes prob-
lem over the full domain (for a case similar to the ones considered in Section 4.2, i.e. Lz=20‘
and d=Lx=0:1). As illustrated in Figure 10, the computation time is signi�cantly greater with
the two domain approach. Therefore, the interest of the two-scale domain decomposition
method does not lie in the computation cost aspect of the problem, at least for the cases
investigated. As indicated in Table II, the interest lies in the gain in terms of memory storage.
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Figure 9. Evolution of the overall permeability predicted using the two-scale domain de-
composition method (TSDD) as a function of the Stokes domain size Nz for d=Lx=0:1
and C=0:05 and 0.3. The ‘Stokes’ overall permeability is obtained solving the Stokes
equations over the whole domain (i.e. Nz =20) whereas the ‘Darcy’ overall permeability is

obtained solving the Darcy problem over the whole domain (i.e. Nz =0).

Finally, it must be emphasised again that the size of the ‘microscopic’ domain (Stokes
domain in our example) is generally not know a priori. In fact, the two-scale decomposition
technique can be viewed as a general method for determining the useful size of a microscopic
region near a singularity.
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Figure 10. Evolution of the computation time tts for the two-scale decomposition method as
a function of the Stokes domain size Nz . tfd is the time required for the direct computation

of Stokes equations over the whole domain.

Table II. Memory size requirement. Comparison between the two-scale domain decomposition (TSDD)
method and the full direct Stokes computation (which corresponds to Nz =20).

d=Lx C TSDD memory need
‘Stokes’ memory need Nz

0.1 0.05 0.32 10
0.5 0.05 0.06 3
0.1 0.3 0.16 6
0.5 0.3 0.06 3

5. CONCLUSION

In this paper, a two-scale domain decomposition technique has been presented through the
computation of the overall permeability of a porous layer limited by a perforated plate. This
technique combines the direct computation of the governing equations at the scale of the
microstructure near the plate with the computation of the average equations in the remaining
part of the porous domain. The method may lead to a considerable gain in memory size
compared to a full direct solution (when such a solution is possible, i.e. when the domain
contains a limited number of representative elementary volumes). The gain is expected to be
still much greater in three dimensions than for the two-dimensional case considered in the
present paper. For the general case in which a direct microscopic simulation is completely out
of reach, the method o�ers a constructive way of determining the useful size of the domain,
near a singularity, where the problem must be solved at the microscopic level.
The method has been illustrated through a problem of single phase �ow at low Reynolds

number but can be implemented for many other situations and transport processes in porous
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media, namely all situations and processes that can be studied within the framework of the
method of volume averaging with closure problems [4].

APPENDIX A: CLOSURE RELATIONS. COMPUTATION OF
TENSOR D AND VECTOR d

As shown in Reference [10], D and d are solutions of the following boundary values problem
to be solved over a unit cell of the porous medium,

−∇d+∇2D= I in Vf (A1)

∇·D=0 in Vf (A2)

D=0 at the cylinder boundary (�uid=solid interface) (A3)

D(xi + ‘)=D(xi); i=1; 2 at the unit cell boundary (A4)

d(xi + ‘)= d(xi); i=1; 2 at the unit cell boundary (A5)

where I is the unit tensor and Vf is the �uid domain contained in the unit cell. Equations
(A4) and (A5) are conditions of spatial periodicity.
In two dimensions, the above problem can be decomposed into two Stokes problems. In

our case, owing to the symmetry of the unit cell, it su�ces to solve only one of these two
problems (see Whitaker [2] for more details). To this end, we used the BEM technique evoked
in Section 2. More details can be found in Reference [5].

APPENDIX B: CELLULAR AVERAGE

For determining a macroscopic pressure from the solution of Stokes problem, we make use
of a weighted average known as the cellular average, Equation (24),

PD = [p]=
1
V

∫
V

[
1
Vf

∫
Vf

p dV
]
dV (B1)

where V is the unit cell volume and Vf the volume of �uid contained within the unit cell.
Within the framework of the volume averaging technique [4], the traditional average for

the pressure is the intrinsic average pressure which is de�ned by

〈p〉f = 1
Vf

∫
Vf

p dV (B2)

As discussed in Whitaker [4, p. 92–93], the traditional average is the proper average for
disordered system while the cellular average is the proper average for spatially periodic porous
media. Proper average means an average that is devoid of small length scale (i.e. of order
‘ with our notations) �uctuations. For spatially periodic porous media, 〈p〉f is a�ected by
such small scale �uctuations while the cellular average, which is nothing else than a spatial
average of 〈p〉f over the unit cell volume ([p]= (1=V ) ∫V 〈p〉f dV ), is not. On can refer to
Whitaker [4] or Quintard and Whitaker [15] and references therein for mode details.
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